COS 423

Problem Set No. 1

Due Wednesday 2/18
Spring 2004

(No Collaboration)
1. (a) Suppose we are comparing implementations of insertion sort and merge sort on the same machine. For inputs of size
[image: image1.wmf]2,

n

³

 insertion sort runs in
[image: image2.wmf]2

10

n

 steps, while merge sort runs in
[image: image3.wmf]90log

nn

 steps. For which values of
[image: image4.wmf]n

 does insertion sort beat merge sort?

(b) What is the smallest value of
[image: image5.wmf]n

 such that an algorithm whose running time is
[image: image6.wmf]2

1000

n

 runs faster than an algorithm whose running time is
[image: image7.wmf]2

n

 on the same machine?
2. Consider linear search (CLRS exercise 2.1-3). How many elements of the input sequence need to be checked on the average, assuming that the element being searched for is equally likely to be any element in the array? How about in the worst case? What are the average-case and worst-case running times of linear search on an
[image: image8.wmf]element

n

-

array in
[image: image9.wmf]notation

Q-

? Justify your answer.

3. (a) Consider adaptive linear search, with the move-one-step-forward rule: after a successful search that finds the desired item in position
[image: image10.wmf],

k

swap this item with its predecessor if
[image: image11.wmf]1.

k

¹

 Show that this method is not
[image: image12.wmf]competitive,

c

-

for any fixed
[image: image13.wmf]c

 independent of
[image: image14.wmf]n

. As in class, a search that ends at position
[image: image15.wmf]k

costs
[image: image16.wmf];

k

 each swap costs 1.
(b) Consider adaptive linear search, with the move-half-way-to-the front rule: after a successful search that finds the desired item in position
[image: image17.wmf],

k

 that item is repeatedly swapped with its predecessor, until it reaches position
[image: image18.wmf]2

/.

k

 Is this method
[image: image19.wmf]competitive

c

-

for some fixed constant
[image: image20.wmf]c

 independent of
[image: image21.wmf]?

n

 Justify your answer.

4. (a) Describe a
[image: image22.wmf](log)time

nn

Q-

 algorithm that, given a set
[image: image23.wmf]S

 of
[image: image24.wmf]n

 integers and another integer
[image: image25.wmf],

x

 determines whether or not there exist two elements in
[image: image26.wmf]S

whose sum is exactly
[image: image27.wmf].

x

(b) Suppose we change the condition of success in (a) to the existence of three elements in
[image: image28.wmf]S

 whose sum is exactly
[image: image29.wmf].

x

 How fast an algorithm can you devise for this case?
_1137390934.unknown

_1137394295.unknown

_1137395953.unknown

_1137396022.unknown

_1137397193.unknown

_1137395985.unknown

_1137396001.unknown

_1137395881.unknown

_1137395927.unknown

_1137394334.unknown

_1137391255.unknown

_1137391606.unknown

_1137391686.unknown

_1137391790.unknown

_1137391669.unknown

_1137391418.unknown

_1137391035.unknown

_1137391125.unknown

_1137391003.unknown

_1137390627.unknown

_1137390874.unknown

_1137390907.unknown

_1137390847.unknown

_1137390423.unknown

_1137390011.unknown

_1137390352.unknown

